昵称:烦夫子
类别:界面/平面设计师
年龄:38
现所在地:北京
主页浏览总数:24259
总积分:89
文章数:88
作品数:70
#include "stdafx.h"
#include "bspline.h"
#include "global.h"
#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif
/*-- Calculate Core -------------------------------------*/
int BSpline::Split (float error, Vector **p) const
//功能: 将每段曲线分为若干段,用于绘图和求交
//参数: error -- 逼近误差
//返回: 点数
{
#define BUF_LEN 2048
int i, k;
float a, b;
Vector *tmp;
Vector n0, n1, p0, p1;
VectorRun dp;
if(error <= 0.0025) error = 0.0025f;
//ASSERT (error > 0);
if (previewmode)
{
tmp = new Vector[num];
if(NULL == tmp)
return -1;
if (p[0])
delete p[0];
p[0] = tmp;
for (i = 0; i < num; i++)
p[0][i] = org[i];
return num;
}
tmp = new Vector[BUF_LEN]; //为分割的曲线分配内存
if(NULL == tmp)
return -1;
tmp[0] = P (0, 0); //分割后,曲线段的第一个点
for (k = 1, i = 0; i < num - 1 && k
a = 0;
b = 1;
p1 = P (i, 0); //计算B样条曲线中某段上的一点
n1 = NP (i, 0); //计算B样条曲线中某段上的一点的法矢
//计算曲线上某一段的坐标,每段曲线分解为许多段,以ERROR为依据,渐次逼近
while (a < b && k < BUF_LEN)
{
p0 = p1;
n0 = n1;
p1 = P (i, b);
n1 = NP (i, b);
//采用逼近法计算误差控制范围内的P1点坐标,当计算出的误差小于ERROR时,给出下一个点
//计算对于曲线段i从p0点到p1点用直线段逼近的误差值,
while (dp.Delta (p0, n0, p1, n1) > error)
{
b = (a + b) / 2;
p1 = P (i, b);
n1 = NP (i, b);
}
tmp[k++] = p1;
a = b;
b = 1;
}
pos[i] = k - 1;
}
pos[num - 1] = k;
Vector* tmp2 = NULL;
tmp2 = new Vector[k];
if(NULL == tmp2)
{
delete [] tmp;
return -1;
}
if (p[0])
delete p[0];
p[0] = tmp2;
memcpy (p[0], tmp, k * sizeof (Vector));
delete [] tmp;
return k;
}
int BSpline::SplitNum (float error) const
//功能: 将每段曲线分为若干段,求点数
//参数: error -- 逼近误差
//返回: 点数
{
// #define BUF_LEN 2048 //2000
int i, k;
float a, b;
Vector n0, n1, p0, p1;
VectorRun dp;
if(error <= 0.001) error = 0.001f;
for (k = 1, i = 0; i < num - 1 && k
a = 0;
b = 1;
p1 = P (i, 0);
n1 = NP (i, 0);
while (a < b && k
p0 = p1;
n0 = n1;
p1 = P (i, b);
n1 = NP (i, b);
while (dp.Delta (p0, n0, p1, n1) > error)
{
b = (a + b) / 2;
p1 = P (i, b);
n1 = NP (i, b);
}
a = b;
b = 1;
}
}
return k;
}
int BSpline::Knots (int m, Vector *p, float knotlen)
//功能: 计算节点(knots)值t[i]
// t[i] = 0, 0, 0, 0, l(1), l(2), ... , l(num-1), l(num), l(num), l(num), l(num)
//参数: m -- 点数; p -- 点; knotlen 节点间距,控制曲线光顺度
//返回: 有效型值点数
{
int i, j, k;
float l=0;
VectorRun dp;
t[0] = t[1] = t[2] = t[3] = 0;
org[0] = p[0];
for (i = 1, j = 4, k = 1; i < m; i++) {
#ifdef UNIFORM_BSPLINE
l += 1; //uniform B-spline
#else
l += dp.Length (p[i] - p[i - 1]); //non-uniform B-spline ????
#endif
if (l >= knotlen ) {
t[j] = t[j - 1] + l;
org[k++] = p[i];
j++;
l = 0;
} //99-06-14
else if(i==m-1) //最后一点
{
if(m>2 && k>1) {
t[j-1] += l;
org[k-1] = p[i];
}
else if(l>=0.0)
{
t[j] = t[j - 1] + l;
org[k++] = p[i];
j++;
l = 0;
}
}
//否则l不清零
}
t[j] = t[j + 1] = t[j + 2] = t[j - 1];
if(k==2 && t[4]<=0.0)
return 0;
return k;
}
float BSpline::B (int j, int k, float x) const
//功能: 计算x点处B样条基函数的值(利用"de Boor-Cox"递推公式)
//参数: j -- 参数区间([0, num+1])
// k -- k-1次B样条(此处为4)
// x -- 变量
//返回: 函数值
//注意: B(j,k,x)的值与coeff是对应的.
// 其中x=t[j+3]处的函数值与coeff[j]相对应:
// B(j, 4,t[j+3]) == coeff[j][0][0]
// B(j+1,4,t[j+3]) == coeff[j][1][0]
// B(j+2,4,t[j+3]) == coeff[j][2][0]
{
if (k == 1)
return (x >= t[j] && x < t[j + 1]) ? 1 : 0;
else {
float a, b, c, d;
a = B (j, k - 1, x) * (x - t[j]);
b = t[j + k - 1] - t[j];
c = B (j + 1, k - 1, x) * (t[j + k] - x);
d = t[j + k] - t[j + 1];
//try
//{
//if (a == 0)
// return (c == 0) ? 0 : c / d;
//else
// return (c == 0) ? a / b : a / b + c / d;
VERIFY (b!=0 && d!=0);
return (c == 0) ? a / b : a / b + c / d;
//}
//catch(...)
//{
//}
}
}
float BSpline::dB (int j, int k, float x) const
//功能: 计算x点处B样条基函数的导数值(利用"de Boor-Cox"递推公式)
//参数: (同上)
//返回: 函数值
{
float a, b, c, d;
a = B (j, k - 1, x) * (k - 1);
b = t[j + k - 1] - t[j];
c = B (j + 1, k - 1, x) * (k - 1);
d = t[j + k] - t[j + 1];
//try
//{
//if (a == 0)
// return (c == 0) ? 0 : c / d;
//else
// return (c == 0) ? a / b : a / b + c / d;
VERIFY (b!=0 && d!=0);
return (c == 0) ? a / b : a / b + c / d;
//}
//catch(...)
//{
//}
}
void BSpline::CalCoeff (Coeff& c, int i)
//功能: 计算系数矩阵(4x4)
// | c[0][0] c[1][0] c[2][0] c[3][0] |
// | c[0][1] c[1][1] c[2][1] c[3][1] |
// | c[0][2] c[1][2] c[2][2] c[3][2] |
// | c[0][3] c[1][3] c[2][3] c[3][3] |
//参数: c -- 系数矩阵, i -- 参数区间([0, num+1])
//返回: 无
{
float t32, t41, t42, t43, t52, t53, t63;
t32 = t[i + 3] - t[i + 2];
t41 = t[i + 4] - t[i + 1];
t42 = t[i + 4] - t[i + 2];
t43 = t[i + 4] - t[i + 3];
t52 = t[i + 5] - t[i + 2];
t53 = t[i + 5] - t[i + 3];
t63 = t[i + 6] - t[i + 3];
//try
//{
VERIFY (t41 != 0);
VERIFY (t42 != 0);
VERIFY (t52 != 0);
VERIFY (t53 != 0);
VERIFY (t63 != 0);
c[0][0] = t43 * t43 / (t42 * t41);
c[0][1] = -3 * c[0][0];
c[0][2] = 3 * c[0][0];
c[0][3] = -c[0][0];
c[2][0] = t32 * t32 / (t52 * t42);
c[2][1] = 3 * t32 * t43 / (t52 * t42);
c[2][2] = 3 * t43 * t43 / (t52 * t42);
c[2][3] = - t43 * t43 * (1 / t42 / t52 + 1 / t53 / t63 + 1 / t53 / t52);
c[3][0] = c[3][1] = c[3][2] = 0;
c[3][3] = t43 * t43 / (t63 * t53);
c[1][0] = 1 - c[0][0] - c[2][0];
c[1][1] = 3 * c[0][0] - c[2][1];
c[1][2] = -3 * c[0][0] - c[2][2];
c[1][3] = c[0][0] - c[2][3] - c[3][3];
//}
//catch(...)
//{
//}
}
Vector BSpline::EndCondition (Vector& p1, Vector& p2, Vector& p3) const
//功能: 计算始末端的端点条件.
// Bessel(抛物线)方法:
// 认为p1, p2, p3三点构成一抛物线(各点的二阶导数为常数)
// p1' + p2' = 2 (p2 - p1) / (t2 - t1)
// p1' + p3' = 2 (p3 - p1) / (t3 - t1)
// p2' + p3' = 2 (p3 - p2) / (t3 - t2)
// ==> p1' = (p2 - p1) / (t2 - t1) + (p3 - p1) / (t3 - t1) - (p3 - p2) / (t3 - t2)
//参数: p1 -- 端点;
// p2 -- 端点后(前)第一点;
// p3 -- 端点后(前)第二点;
//返回: p -- 切矢(对于末端是反向的切矢)
{
float t21, t32, t31;
VectorRun dp;
t21 = dp.Length (p2 - p1);
t32 = dp.Length (p3 - p2);
t31 = t21 + t32;
Vector p;
//try
//{
VERIFY (t21 != 0);
VERIFY (t31 != 0);
VERIFY (t32 != 0);
p = (p2 - p1) / t21 + (p3 - p1) / t31 - (p3 - p2) / t32;
//}
//catch(...) {}
return dp.UnitVector (p) * t21;
}